Send to

Choose Destination
J Med Chem. 2000 May 4;43(9):1866-77.

Novel synthetic oleanane and ursane triterpenoids with various enone functionalities in ring A as inhibitors of nitric oxide production in mouse macrophages.

Author information

Department of Chemistry, Dartmouth College, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.


We initially randomly synthesized about 60 oleanane and ursane triterpenoids as potential anti-inflammatory and cancer chemopreventive agents. Preliminary screening of these derivatives for inhibition of production of nitric oxide induced by interferon-gamma in mouse macrophages revealed that 3-oxooleana-1, 12-dien-28-oic acid (B-15) showed significant activity (IC(50) = 5.6 microM). On the basis of the structure of B-15, 19 novel olean- and urs-12-ene triterpenoids with a 1-en-3-one functionality having a substituent at C-2 in ring A have been designed and synthesized. Among them, 3-oxooleana-1,12-diene derivatives with carboxyl, methoxycarbonyl, and nitrile groups at C-2 showed higher activity than the lead compound B-15. In particular, 2-carboxy-3-oxooleana-1, 12-dien-28-oic acid (3) had the highest activity (IC(50) = 0.07 microM) in this group of triterpenoids. The potency of 3 was similar to that of hydrocortisone (IC(50) = 0.01 microM), although 3 does not act through the glucocorticoid receptor. Interesting structure-activity relationships of these novel synthetic triterpenoids are also discussed.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center