Format

Send to

Choose Destination
See comment in PubMed Commons below
J Physiol. 2000 May 1;524 Pt 3:853-63.

Evidence for myosin light chain kinase mediating noradrenaline-evoked cation current in rabbit portal vein myocytes.

Author information

1
Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.

Abstract

The role of myosin light chain kinase (MLCK) in the activation of the noradrenaline-evoked non-selective cation current (Icat) was examined with the whole-cell recording technique in single rabbit portal vein smooth muscle cells. Intracellular dialysis with 5 microM MLCK(11-19)amide, a substrate-specific peptide inhibitor of MLCK, markedly reduced the amplitude and rate of activation of noradrenaline-evoked Icat. A similar result was obtained when the cells were dialysed with 10 microM AV25, which also inhibits MLCK by an action at the auto-inhibitory domain of MLCK. Inhibitors of binding of ATP to MLCK, wortmannin and synthetic naphthalenesulphonyl derivatives (ML-7 and ML-9), at micromolar concentrations, also reduced the amplitude of noradrenaline-evoked Icat. ML-7 and ML-9 (both at 5 microM) reduced the amplitude of Icat induced by both guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) and 1-oleoyl-2-acetyl-sn-glycerol (OAG). MLCK(11-19)amide, AV25 and ML-9 did not inhibit the noradrenaline-evoked Ca2+-activated potassium current at a holding potential of 0 mV. In addition, MLCK(11-19)amide and AV25 did not reduce the non-selective cation current induced by ATP in rabbit ear artery cells. Intracellular dialysis with 2 microM Ca2+ and 9 microM calmodulin activated Icat, which developed over a period of about 5 min. Intracellular dialysis with the non-hydrolysable analogue of ATP, 5'-adenylylimidodiphosphate (AMP-PNP), reduced the amplitude and rate of activation of noradrenaline-evoked Icat. The results indicate that MLCK mediates noradrenaline-activated Icat in rabbit portal vein smooth muscle cells.

PMID:
10790163
PMCID:
PMC2269907
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center