Format

Send to

Choose Destination
Nature. 2000 Apr 20;404(6780):892-7.

Role of NF-kappaB in p53-mediated programmed cell death.

Author information

1
Regulation of Cell Growth Laboratory, NCI-FCRDC, Frederick, Maryland 21702-1201, USA.

Abstract

The tumour suppressor p53 inhibits cell growth through activation of cell-cycle arrest and apoptosis, and most cancers have either mutation within the p53 gene or defects in the ability to induce p53. Activation or re-introduction of p53 induces apoptosis in many tumour cells and may provide effective cancer therapy. One of the key proteins that modulates the apoptotic response is NF-kappaB, a transcription factor that can protect or contribute to apoptosis. Here we show that induction of p53 causes an activation of NF-kappaB that correlates with the ability of p53 to induce apoptosis. Inhibition or loss of NF-kappaB activity abrogated p53-induced apoptosis, indicating that NF-kappaB is essential in p53-mediated cell death. Activation of NF-kappaB by p53 was distinct from that mediated by tumour-necrosis factor-alpha and involved MEK1 and the activation of pp90rsk. Inhibition of MEK1 blocked activation of NF-kappaB by p53 and completely abrogated p53-induced cell death. We conclude that inhibition of NF-kappaB in tumours that retain wild-type p53 may diminish, rather than augment, a therapeutic response.

PMID:
10786798
DOI:
10.1038/35009130
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center