Format

Send to

Choose Destination
See comment in PubMed Commons below
Anesthesiology. 2000 May;92(5):1257-67.

Neural mechanisms of antinociceptive effects of hypnosis.

Author information

1
Departments of Anesthesiology and Intensive Care Medicine and Neurology, and the Cyclotron Research Centre, University Hospital of Liège, Liège, Belgium. anesrea@ulg.ac.be

Abstract

BACKGROUND:

The neural mechanisms underlying the modulation of pain perception by hypnosis remain obscure. In this study, we used positron emission tomography in 11 healthy volunteers to identify the brain areas in which hypnosis modulates cerebral responses to a noxious stimulus.

METHODS:

The protocol used a factorial design with two factors: state (hypnotic state, resting state, mental imagery) and stimulation (warm non-noxious vs. hot noxious stimuli applied to right thenar eminence). Two cerebral blood flow scans were obtained with the 15O-water technique during each condition. After each scan, the subject was asked to rate pain sensation and unpleasantness. Statistical parametric mapping was used to determine the main effects of noxious stimulation and hypnotic state as well as state-by-stimulation interactions (i.e., brain areas that would be more or less activated in hypnosis than in control conditions, under noxious stimulation).

RESULTS:

Hypnosis decreased both pain sensation and the unpleasantness of noxious stimuli. Noxious stimulation caused an increase in regional cerebral blood flow in the thalamic nuclei and anterior cingulate and insular cortices. The hypnotic state induced a significant activation of a right-sided extrastriate area and the anterior cingulate cortex. The interaction analysis showed that the activity in the anterior (mid-)cingulate cortex was related to pain perception and unpleasantness differently in the hypnotic state than in control situations.

CONCLUSIONS:

Both intensity and unpleasantness of the noxious stimuli are reduced during the hypnotic state. In addition, hypnotic modulation of pain is mediated by the anterior cingulate cortex.

PMID:
10781270
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center