Format

Send to

Choose Destination
Am J Hum Genet. 2000 Jun;66(6):1794-806. Epub 2000 Apr 24.

Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere.

Author information

1
Department of Human Genetics, Mount Sinai School of Medicine, New York, NY, 10029, USA. peter.warburton@mssm.edu

Abstract

Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of alpha-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.

PMID:
10777715
PMCID:
PMC1378043
DOI:
10.1086/302924
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center