Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2000 May;293(2):417-25.

Cyclooxygenase-2 contributes to N-methyl-D-aspartate-mediated neuronal cell death in primary cortical cell culture.

Author information

Department of Pharmacology, Program in Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-6125, USA.


Cyclooxygenase isozymes (COX-1 and COX-2) are found to be constitutively expressed in brain, with neuronal expression of COX-2 being rapidly induced after numerous insults, including cerebral ischemia. Because overactivation of N-methyl-D-aspartate (NMDA) receptors has been implicated in the cell loss associated with ischemia, we characterized the expression of the COX isozymes in murine mixed cortical cell cultures and used isozyme-selective inhibitors to determine their relative contribution to NMDA receptor-stimulated prostaglandin (PG) production and excitotoxic neuronal cell death. Immunocytochemical analysis of mixed cortical cell cultures revealed that COX-2 expression was restricted to neurons, whereas COX-1 was expressed in both neurons and astrocytes. Brief exposure to NMDA (5 min; 100 microM) elicited a time-dependent accumulation of PGs in the culture medium that preceded neuronal cell death and correlated with the induction of COX-2 mRNA. COX-1 expression remained unchanged. Flurbiprofen, a nonselective COX-1/COX-2 inhibitor, blocked NMDA-stimulated PG production and attenuated neuronal death in a concentration-dependent manner. Similar results were obtained with the specific COX-2 inhibitor NS-398 (10-30 microM) but not with the selective COX-1 inhibitor valeryl salicylate (10-300 microM). Inhibition of total constitutive COX activity with aspirin (100 microM, 1.5 h) before NMDA exposure did not prevent subsequent NMDA-mediated neuronal cell death. However, neuronal injury in aspirin-pretreated cultures was attenuated by flurbiprofen administration after NMDA exposure. Finally, the protection afforded by COX-2 inhibition was specific for NMDA because neither flurbiprofen nor NS-398 protected neurons against kainate-mediated neurotoxicity. Together, these results support the conclusion that newly synthesized COX-2 protein contributes to NMDA-induced neuronal injury.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center