Format

Send to

Choose Destination
Nucleosides Nucleotides Nucleic Acids. 2000 Jan-Feb;19(1-2):125-53.

Design, synthesis, and antiviral evaluation of 2-deoxy-D-ribosides of substituted benzimidazoles as potential agents for human cytomegalovirus infections.

Author information

1
Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor 48109-1065, USA.

Abstract

Stereoselective glycosylation of 2,5,6-trichlorobenzimidazole (1b), 2-bromo-5,6-dichlorobenzimidazole (1c), 5,6-dichlorobenzimidazole (1d), 5,6-dichlorobenzimidazole-2-thione (1e), 5,6-dichloro-2-(methylthio)benzimidazole (1f), 2-(benzylthio)-5,6-dichlorobenzimidazole (1g), and 2-chloro-5,6-dimethylbenzimidazole (1h) with 2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranosyl chloride was achieved to give the desired beta nucleosides 2b-h. Subsequent deprotection afforded the corresponding free beta-D-2-deoxyribosides 3b-h. The 2-methoxy derivative 3i was synthesized by the treatment of 2b with methanolic sodium methoxide. Displacement of the 2-chloro group of 2b with lithium azide followed by a removal of the protective groups gave the 2-azido-5,6-dichlorobenzimidazole derivative (5). The 2-amino derivative (6) was obtained by hydrogenolysis of 5 over Raney nickel. 5,6-Dichloro-2-isopropylamino-1-(2-deoxy-beta-D-erythro- pentofuranosyl)benzimidazole (10) was prepared using 2'-deoxyuridine (7), N-deoxyribofuranosyl transferase and 1d followed by functionalization of the C2 position. Antiviral evaluation of target compounds established that compounds 3b and 3c were active against human cytomegalovirus (HCMV) at non-cytotoxic concentrations. The activity of these 2-deoxy ribosides, however, was less than the activity of the parent riboside, 2,5,6-trichloro-1-beta-D-ribofuranosylbenzimidazole (TCRB). Compared to TCRB, 3b and 3c were somewhat more cytotoxic and active against herpes simplex virus type 1. Compounds 3d-i with other substituents in the 2-position were inactive against both viruses and non-cytotoxic. In contrast, compounds with amine substituents in the 2-position (5, 6, 10) were active against HCMV albeit less so than TCRB. These results establish that 2-deoxy-D-ribosyl benzimidazoles are less active against the DNA virus HCMV than are the corresponding D-ribosides.

PMID:
10772706
DOI:
10.1080/15257770008033000
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center