Format

Send to

Choose Destination
Eur J Pharmacol. 2000 Mar 30;393(1-3):215-22.

Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases.

Author information

1
Department of Neuropathology, MRC Neurochemical Pathology Unit, Newcastle General Hospital, Westgate Road, Newcastle, UK. e.k.perry@ncl.ac.uk

Abstract

Human brain ageing is associated with reductions in a variety of nicotinic receptors subtypes, whereas changes in age-related disorders including Alzheimer's disease or Parkinson's disease are more selective. In Alzheimer's disease, in the cortex there is a selective loss of the alpha4 (but not alpha3 or 7) subunit immunoreactivity and of nicotine or epibatidine binding but not alpha-bungarotoxin binding. Epibatidine binding is inversely correlated with clinical dementia ratings and with the level of Abeta1-42, but not related to plaque or tangle densities. In contrast, alpha-bungarotoxin binding is positively correlated with plaque densities in the entorhinal cortex. In human temporal cortex loss of acetylcholinesterase catalytic activity is positively correlated with decreased epibatidine binding and in a transgenic mouse model over expressing acetylcholinesterase, epibatidine binding is elevated. In Parkinson's disease, loss of striatal nicotine binding appears to occur early but is not associated with a loss of alpha4 subunit immunoreactivity. Tobacco use in normal elderly individuals is associated with increased alpha4 immunoreactivity in the cortex and lower densities of amyloid-beta plaques, and with greater numbers of dopaminergic neurons in the substantia nigra pars compacta. These findings indicate an early involvement of the alpha4 subunit in beta-amyloidosis but not in nigro-striatal dopaminergic degeneration.

PMID:
10771016
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center