Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cogn Neurosci. 2000 Jan;12(1):1-47.

Imaging cognition II: An empirical review of 275 PET and fMRI studies.

Author information

1
Department of Psychology, University of Alberta, Edmonton, Canada.

Abstract

Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been extensively used to explore the functional neuroanatomy of cognitive functions. Here we review 275 PET and fMRI studies of attention (sustained, selective, Stroop, orientation, divided), perception (object, face, space/motion, smell), imagery (object, space/motion), language (written/spoken word recognition, spoken/no spoken response), working memory (verbal/numeric, object, spatial, problem solving), semantic memory retrieval (categorization, generation), episodic memory encoding (verbal, object, spatial), episodic memory retrieval (verbal, nonverbal, success, effort, mode, context), priming (perceptual, conceptual), and procedural memory (conditioning, motor, and nonmotor skill learning). To identify consistent activation patterns associated with these cognitive operations, data from 412 contrasts were summarized at the level of cortical Brodmann's areas, insula, thalamus, medial-temporal lobe (including hippocampus), basal ganglia, and cerebellum. For perception and imagery, activation patterns included primary and secondary regions in the dorsal and ventral pathways. For attention and working memory, activations were usually found in prefrontal and parietal regions. For language and semantic memory retrieval, typical regions included left prefrontal and temporal regions. For episodic memory encoding, consistently activated regions included left prefrontal and medial temporal regions. For episodic memory retrieval, activation patterns included prefrontal, medial temporal, and posterior midline regions. For priming, deactivations in prefrontal (conceptual) or extrastriate (perceptual) regions were consistently seen. For procedural memory, activations were found in motor as well as in non-motor brain areas. Analysis of regional activations across cognitive domains suggested that several brain regions, including the cerebellum, are engaged by a variety of cognitive challenges. These observations are discussed in relation to functional specialization as well as functional integration.

PMID:
10769304
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center