Send to

Choose Destination
J Histochem Cytochem. 2000 May;48(5):653-62.

Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition.

Author information

Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan.


Seven-color analyses of immunofluorescence-stained tissue samples were accomplished using Fourier spectroscopy-based hyperspectral imaging and singular value decomposition. This system consists of a combination of seven fluorescent dyes, three filtersets, an epifluorescence microscope, a spectral imaging system, a computer for data acquisition, and data analysis software. The spectra of all pixels in a multicolor image were taken simultaneously using a Sagnac type interferometer. The spectra were deconvolved to estimate the contribution of each component dye, and individual dye images were constructed based on the intensities of assigned signals. To obtain mixed spectra, three filter sets, i.e., Bl, Gr, and Rd for Alexa488 and Alexa532, for Alexa546, Alexa568, and Alexa594, and for Cy5 and Cy5.5, respectively, were used for simultaneous excitation of two or three dyes. These fluorophores have considerable spectral overlap which precludes their separation by conventional analysis. We resolved their relative contributions to the fluorescent signal by a method involving linear unmixing based on singular value decomposition of the matrices consisting of dye spectra. Analyses of mouse thymic tissues stained with seven different fluorescent dyes provided clear independent images, and any combination of two or three individual dye images could be used for constructing multicolor images.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center