Format

Send to

Choose Destination
See comment in PubMed Commons below
Gene. 2000 Apr 4;246(1-2):311-20.

HNF3beta and GATA-4 transactivate the liver-enriched homeobox gene, Hex.

Author information

1
The Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA. lee.denson@yale.edu

Abstract

The orphan homeobox gene, Hex, has a limited domain of expression which includes the developing and adult mouse liver. Hex is expressed in the developing liver coincident with the forkhead/winged helix transcription factor, Hepatocyte Nuclear Factor 3beta (HNF3beta). Although preliminary characterization of the mouse Hex promoter has recently been reported, the identity of the molecular regulators that drive liver expression is not known. We hypothesized that putative HNF3beta and GATA-4 elements within the Hex promoter would confer liver-enriched expression. A series of Hex promoter-driven luciferase reporter constructs were transfected in liver-derived HepG2 and fibroblast-like Cos cells+/-HNF3beta or GATA expression plasmids. The Hex promoter region from nt -235/+22 conferred basal activity in both HepG2 and Cos cells, with the region from -103/+22 conferring liver-enriched activity. HNF3beta and GATA-4 transactivated the promoter via response elements located within nt -103/+22, whereas Sp1 activated the -235/+22 construct. Mutation of the HNF3 element significantly reduced promoter activity in HepG2 cells, whereas this element in isolation conferred HNF3beta responsiveness to a heterologous promoter. Electrophoretic mobility shift assays were performed to confirm transcription factor:DNA binding. We conclude that HNF3beta and GATA-4 contribute to liver-enriched expression of Hex.

PMID:
10767553
[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Secondary source ID, Grant support

Publication types

MeSH terms

Substances

Secondary source ID

Grant support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center