Format

Send to

Choose Destination
J Biol Chem. 2000 Jul 7;275(27):20324-36.

Molecular basis of ligand recognition by integrin alpha 5beta 1. I. Specificity of ligand binding is determined by amino acid sequences in the second and third NH2-terminal repeats of the alpha subunit.

Author information

1
Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom. paul.mold@man.ac.uk

Abstract

The NH(2)-terminal portion (putative ligand-binding domain) of alpha subunits contains 7 homologous repeats, the last 3 or 4 of which possess divalent cation binding sequences. These repeats are predicted to form a seven-bladed beta-propeller structure. To map ligand recognition sites on the alpha(5) subunit we have taken the approach of constructing and expressing alpha(V)/alpha(5) chimeras. Although the NH(2)-terminal repeats of alpha(5) and alpha(V) are >50% identical at the amino acid level, alpha(5)beta(1) and alpha(V)beta(1) show marked differences in their ligand binding specificities. Thus: (i) although both integrins recognize the Arg-Gly-Asp (RGD) sequence in fibronectin, the interaction of alpha(5)beta(1) but not of alpha(V)beta(1) with fibronectin is strongly dependent on the "synergy" sequence Pro-His-Ser-Arg-Asn; (ii) alpha(5)beta(1) binds preferentially to RGD peptides in which RGD is followed by Gly-Trp (GW) whereas alpha(V)beta(1) has a broader specificity; (iii) only alpha(5)beta(1) recognizes peptides containing the sequence Arg-Arg-Glu-Thr-Ala-Trp-Ala (RRETAWA). Therefore, amino acid residues involved in ligand recognition by alpha(5)beta(1) can potentially be identified in gain-of-function experiments by their ability to switch the ligand binding properties of alpha(V)beta(1) to those of alpha(5)beta(1). By introducing appropriate restriction enzyme sites, or using site-directed mutagenesis, parts of the NH(2)-terminal repeats of alpha(V) were replaced with the corresponding regions of the alpha(5) subunit. Chimeric subunits were expressed on the surface of Chinese hamster ovary-B2 cells (which lack endogenous alpha(5)) as heterodimers with hamster beta(1). Stable cell lines were generated and tested for their ability to attach to alpha(5)beta(1)-selective ligands. Our results demonstrate that: (a) the first three NH(2)-terminal repeats contain the amino acid sequences that determine ligand binding specificity and the same repeats include the epitopes of function blocking anti-alpha subunit mAbs; (b) the divalent cation-binding sites (in repeats 4-7) do not confer alpha(5)beta(1)- or alpha(V)beta(1)-specific ligand recognition;

PMID:
10764748
DOI:
10.1074/jbc.M000572200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center