Send to

Choose Destination
Toxicol Appl Pharmacol. 2000 Apr 15;164(2):149-60.

Apoptosis induction by the satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation.

Author information

Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA.


The satratoxins are members of the trichothecene mycotoxin family that are produced by the fungus Stachybotrys and that have been etiologically associated with building-related health problems. The purpose of this study was to relate cytotoxic and apoptotic capacities of satratoxins and other trichothecenes to the activation of three groups of mitogen-activated protein kinases (MAPKs) (extracellular signal-regulated protein kinase (ERK), p38 MAPK, and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK)). Two myeloid models, RAW 264.7 murine macrophage and U937 human leukemic cells were used. Upon evaluating representative trichothecenes in the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) cleavage assay, cytotoxicity was evident according to the following rank order: satratoxin G, roridin A, and verrucarin A > T-2 toxin, satratoxin F, H > nivalenol, and vomitoxin. Comparable results were found when measuring trichothecene-mediated apoptosis using DNA fragmentation and fluorescence microscopy assays, thus suggesting that cytotoxicity was mediated through an apoptotic process. Assessment of MAPK activation using Western blot analysis revealed that trichothecenes activated not only SAPK/JNK and p38 MAPK but also ERK. Activation of MAPKs by satratoxins and other trichothecenes correlated with and preceded apoptosis. The concentration of satratoxin G sufficient for protein synthesis inhibition correlated with that required for apoptosis and activation of all three MAPKs. Cycloheximide had similar effects to trichothecenes, suggesting that ribosome binding or protein synthesis inhibition may play roles in MAPK activation and apoptosis induction. Apoptosis induction by satratoxin G and vomitoxin was markedly enhanced when ERK activation was selectively inhibited by ERK-specific inhibitor PD98059, thus indicating a negative role for ERK. Inhibition of p38 MAPK activity with the p38-specific inhibitor SB203580 had no effect on apoptosis induction by the highly toxic satratoxin G. However, SB203580 moderately inhibited apoptosis induction by the less toxic trichothecene vomitoxin, thus implying a partial role of p38 MAPK in trichothecene-induced apoptosis. The results suggest that the satratoxins are among the most potent trichothecenes and that MAPKs may play integral roles in the diverse toxic manifestations of these mycotoxins.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center