Format

Send to

Choose Destination
J Morphol. 2000 May;244(2):109-25.

Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic puffin, Fratercula arctica.

Author information

1
Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.

Abstract

Twenty-three species within the avian family Alcidae are capable of wing-propelled flight in the air and underwater. Alcids have been viewed as Northern Hemisphere parallels to penguins, and have often been studied to see if their underwater flight comes at a cost, compromising their aerial flying ability. We examined the anatomy and histochemistry of select wing muscles (Mm. pectoralis, supracoracoideus, latissimus dorsi caudalis, coracobrachialis caudalis, triceps scapularis, and scapulohumeralis caudalis) from Atlantic puffins (Fratercula arctica) to assess if the muscle fiber types reveal the existence of a compromise associated with "dual-medium" flight. Pectoralis was found to be proportional in size with that of nondiving species, although the supracoracoideus was proportionally larger in puffins. Muscle fiber types were largely aerobic in both muscles, with two distinct fast-twitch types demonstrable: a smaller, aerobic, moderately glycolytic population (FOg), and a larger, moderately aerobic, glycolytic population (FoG). The presence of these two fiber types in the primary flight muscles of puffins suggests that aerial and underwater flight necessitate a largely aerobic fiber complement. We suggest that alcids do not represent an adaptive compromise, but a stable adaptation for wing-propelled locomotion both in the air and underwater.

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center