Format

Send to

Choose Destination
Mol Microbiol. 2000 Apr;36(1):183-93.

Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA.

Author information

1
Department of Molecular Biology, Odense University, DK-5230 Odense M, Denmark. srd@molbiol.ou.dk

Abstract

The macrolide antibiotic erythromycin and its 6-O-methyl derivative (clarithromycin) bind to bacterial ribosomes primarily through interactions with nucleotides in domains II and V of 23S rRNA. The domain II interaction occurs between nucleotide A752 and the macrolide 3-cladinose moiety. Removal of the cladinose, and substitution of a 3-keto group (forming the ketolide RU 56006), results in loss of the A752 interaction and an approximately 100-fold drop in drug binding affinity. Within domain V, the key determinant of drug binding is nucleotide A2058 and substitution of G at this position is the major cause of drug resistance in some clinical pathogens. The 2058G mutation disrupts the drug-domain V contact and leads to a further > 25 000-fold decrease in the binding of RU 56006. Drug binding to resistant ribosomes can be improved over 3000-fold by forming an alternative and more effective contact to A752 via alkyl-aryl groups linked to a carbamate at the drug 11/12 position (in the ketolide antibiotics HMR 3647 and HMR 3004). The data indicate that simultaneous drug interactions with domains II and V strengthen binding and that the domain II contact is of particular importance to achieve binding to the ribosomes of resistant pathogens in which the domain V interaction is perturbed.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center