Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Biol. 2000 Apr 15;220(2):401-11.

Functional analysis of spermatogonial stem cells in Steel and cryptorchid infertile mouse models.

Author information

1
Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Abstract

Spermatogenesis is a complex and productive process that originates from stem cell spermatogonia and ultimately results in formation of mature spermatozoa. The stem cell undergoes self-renewal throughout life, but study of its biological characteristics has been difficult because a very small number (2 to 3 in 10(4) cells) exist in the testis and they can only be identified by function. Although the development of the spermatogonial transplantation technique has provided an assay system for stem cells, efficient methods to enrich stem cells have not been available. Here, we examined two infertile mouse models, Steel/Steel(Dickie)(Sl/Sl(d)) and experimental cryptorchid, as a source of testis cell populations enriched in stem cells. The Sl/Sl(d) testis showed little enrichment, which raises questions about how adult stem cell number is determined and about the currently accepted belief that adult stem cells are independent of Sl factor. The cells recovered from cryptorchid testes were enriched for stem cells 25-fold (colonies) or 50-fold (area) compared to wild-type testes. The cryptorchid condition does not affect stem cell activity, but eliminates almost all differentiated cells, and about 1 in 200 cells is a stem cell. Thus, cryptorchid testes provide an important approach for purification and characterization of spermatogonial stem cells.

PMID:
10753526
DOI:
10.1006/dbio.2000.9655
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center