Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Brain Res Rev. 2000 Apr;32(1):130-7.

Intercellular communication in the eye: clarifying the need for connexin diversity.

Author information

1
Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. twhite@hms.harvard.edu

Abstract

In the vertebrate eye, virtually every cell type is directly coupled to its neighbors by intercellular channels present in gap junctions. Although these structures share the common property of allowing adjacent cells to directly exchange ions, second messengers and small metabolites, intercellular channels in the eye also play a specific role in distinct functions such as neuronal transmission at electrotonic synapses in the retina, and the maintenance of homeostasis in the avascular lens. The structural proteins comprising these channels, the connexins (Cx), are a multigene family of which many members are expressed in the eye, even in the same cell type. This molecular heterogeneity poses the crucial question of whether and how a diversity in gap junctional structural proteins influences intercellular communication in ocular tissues. This review will focus on two recent advances in the understanding of connexin diversity in regard to the eye. First, connexin knockouts have demonstrated that postnatal development and homeostasis in the lens requires multiple connexin proteins. Secondly, functional characterization of new connexins that are abundantly expressed in the retina has revealed biophysical properties that mimic those recorded from retinal neurons.

PMID:
10751662
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center