Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1035-41.

Temporal contribution of body movement to very long-term heart rate variability in humans.

Author information

1
Educational Physiology Laboratory, Graduate School of Education, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

Abstract

A newly developed, very long-term ( approximately 7 days) ambulatory monitoring system for assessing beat-to-beat heart rate variability (HRV) and body movements (BM) was used to study the mechanism(s) responsible for the long-period oscillation in human HRV. Data continuously collected from five healthy subjects were analyzed by 1) standard auto- and cross-spectral techniques, 2) a cross-Wigner distribution (WD; a time-frequency analysis) between BM and HRV for 10-s averaged data, and 3) coarse-graining spectral analysis for 600 successive cardiac cycles. The results showed 1) a clear circadian rhythm in HRV and BM, 2) a 1/f (beta)-type spectrum in HRV and BM at ultradian frequencies, and 3) coherent relationships between BM and HRV only at specific ultradian as well as circadian frequencies, indicated by significant (P < 0.05) levels of the squared coherence and temporal localizations of the covariance between BM and HRV in the cross-WD. In a single subject, an instance in which the behavioral (mean BM) and autonomic [HRV power >0.15 Hz and mean heart rate (HR)] rhythmicities were dissociated occurred when the individual had an irregular daily life. It was concluded that the long-term HRV in normal humans contained persistent oscillations synchronized with those of BM at ultradian frequencies but could not be explained exclusively by activity levels of the subjects.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center