Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2000 May 1;1465(1-2):246-62.

Sucrose transporters in plants: update on function and structure.

Author information

  • 1Laboratoire de Biochimie et Physiologie Végétales, ESA CNRS 6161, Bâtiment Botanique, 40 Avenue du Recteur Pineau, F-86022, Poitiers, France. remi.lemoine@campus.univ-poitiers.fr

Abstract

In plants, sucrose is the major transport form for photoassimilated carbon and is both a source of carbon skeletons and energy for plant organs unable to perform photosynthesis (sink organs). As a molecule translocated over distance, sucrose has to pass through a number of membranes. Membrane transport of sucrose has therefore been considered for a long time as a major determinant of plant productivity. After several decades of physiological and biochemical experiments measuring the activity of sucrose carriers, unequivocal evidence came from the first identification of a cDNA coding a sucrose carrier (SoSUT1, Riesmeier et al. (1992) EMBO J. 11, 4705-4713). At present 20 different cDNAs encoding sucrose carriers have been identified in different plant species, in both dicots and monocots (one case). The total number is increasing rapidly and most importantly, it can be guessed from the results obtained for Arabidopsis, that in each species, sucrose transporters represent a gene family. The sequences are highly conserved and those carriers display the typical 12 transmembrane alpha-helices of members of the Major Facilitator superfamily. Yeast expression of those carriers indicate that they are all influx carriers, all cotransport sucrose and proton and that their affinity for sucrose is surprisingly similar (0.2-2 mM). All their characteristics are in agreement with those demonstrated at the physiological level in plants. These characteristics are discussed in relation to the function in plants and the few data available on the structure of those transporters in relation to their function are presented.

PMID:
10748258
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center