Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Jun 23;275(25):18962-8.

Ca2+/Calmodulin reverses phosphatidylinositol 3,4, 5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity.

Author information

  • 1Pharmacology and Biochemistry Departments, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.


Regulators of G protein signaling (RGS proteins) are GTPase-activating proteins (GAPs) for G(i) and/or G(q) class G protein alpha subunits. RGS GAP activity is inhibited by phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) but not by other lipid phosphoinositides or diacylglycerol. Both the negatively charged head group and long chain fatty acids (C16) are required for binding and inhibition of GAP activity. Amino acid substitutions in helix 5 within the RGS domain of RGS4 reduce binding affinity and inhibition by PIP(3) but do not affect inhibition of GAP activity by palmitoylation. Conversely, the GAP activity of a palmitoylation-resistant mutant RGS4 is inhibited by PIP(3). Calmodulin binds all RGS proteins we tested in a Ca(2+)-dependent manner but does not directly affect GAP activity. Indeed, Ca(2+)/calmodulin binds a complex of RGS4 and a transition state analog of Galpha(i1)-GDP-AlF(4)(-). Ca(2+)/calmodulin reverses PIP(3)-mediated but not palmitoylation-mediated inhibition of GAP activity. Ca(2+)/calmodulin competition with PIP(3) may provide an intracellular mechanism for feedback regulation of Ca(2+) signaling evoked by G protein-coupled agonists.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center