Send to

Choose Destination
Plant J. 2000 Jan;21(2):157-66.

Movement of plant viruses is delayed in a beta-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition.

Author information

Friedrich Miescher Institute, Basel, Switzerland.


Susceptibility to virus infection is decreased in a class I beta-1,3-glucanase (GLU I)-deficient mutant (TAG4.4) of tobacco generated by antisense transformation. TAG4.4 exhibited delayed intercellular trafficking via plasmodesmata of a tobamovirus (tobacco mosaic virus), of a potexvirus (recombinant potato virus X expressing GFP), and of the movement protein (MP) 3a of a cucumovirus (cucumber mosaic virus). Monitoring the cell-to-cell movement of dextrans and peptides by a novel biolistic method revealed that the plasmodesmatal size exclusion limit (SEL) of TAG4.4 was also reduced from 1.0 to 0.85 nm. Therefore, GLU I-deficiency has a broad effect on plasmodesmatal movement, which is not limited to a particular virus type. Deposition of callose, a substrate for beta-1,3-glucanases, was increased in TAG4.4 in response to 32 degrees C treatment, treatment with the fungal elicitor xylanase, and wounding, suggesting that GLU I has an important function in regulating callose metabolism. Callose turnover is thought to regulate plasmodesmatal SEL. We propose that GLU I induction in response to infection may help promote MP-driven virus spread by degrading callose.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center