Send to

Choose Destination
Br J Nutr. 2000 Feb;83(2):115-22.

Evaluation of the novel Tanita body-fat analyser to measure body composition by comparison with a four-compartment model.

Author information

MRC Human Nutrition Research, Cambridge, UK.


The Tanita body-fat analyser is a novel device to estimate body fat, based on the principles of bioelectrical impedance. It differs from other impedance systems which use surface electrodes in that the subjects stand bare-footed on a metal sole-plate which incorporates the electrodes, hence impedance is measured through the legs and lower trunk. In 104 men and 101 women (16-78 years and BMI 16-41 kg/m2) the mean bias in body-fat mass measured using the Tanita body-fat analyser was 0.8 (2SD 7.9) kg relative to a four-compartment model. This is comparable to the other prediction techniques tested (conventional tetrapolar impedance -1.3 (2SD 6.9) kg, skinfold thicknesses 0.3 (2SD 7.4) kg, and BMI-based formulas -0.2 (2SD 9.0) kg and -0.6 (2SD 8.5) kg), but the agreement was poorer than for 'reference' methods to measure body fat (density 0.2 (2SD 3.7) kg, total body water -0.9 (2SD 3.4) kg and dual-energy X-ray absorptiometry 0.1 (2SD 5.0) kg). The present paper also describes the derivation of a new prediction equation for the calculation of body composition from the Tanita body-fat analyser. The equation incorporates sex, age, and a log-transformation of height, weight and the measured impedance to predict body fat measured by a four-compartment model. This approach is recommended in the derivation of other prediction equations in body composition analysis. Using this novel prediction equation the residual standard deviations were 4.8% for men and 3.3% for women. A similar analysis using data collected with a conventional tetrapolar system yielded residual standard deviations of 4.3% for men and 3.1% for women. This demonstrates that the practical simplicity of the novel Tanita method is not associated with a clinically significant decrement in performance relative to a traditional impedance device.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Cambridge University Press
Loading ...
Support Center