Format

Send to

Choose Destination
Exp Cell Res. 2000 Apr 10;256(1):112-21.

Effects of cross-linked profilin:beta/gamma-actin on the dynamics of the microfilament system in cultured cells.

Author information

1
Department of Cell Biology, Wenner-Gren Institute, Stockholm University, Stockholm, S-106 91, Sweden.

Abstract

There is evidence that the profilin:actin complex is the immediate precursor in the formation of actin filaments in cells. This paper describes the cell morphology and microfilament distribution after microinjection of covalently cross-linked profilin:beta/gamma-actin (PxA) in two different cell lines. Injected cells were either kept unstimulated or stimulated with platelet-derived growth factor (PDGF) before fixation and visualization of filamentous actin. After injection of low doses of PxA, the cells displayed an actin organization characterized by a clearance of diffuse fluorescence from a region immediately interior of ruffling edges and the appearance of small dots of fluorescence in the same region. At higher concentrations, PxA effectively inhibited outgrowth of lamellae and microspikes, and there was a drastic reduction of actin staining in the zone behind the advancing edge. This effect is reminiscent of the effect of cytochalasin B on fibroblasts and the growth cone of neuronal cells. As in these cases, there remained a rim of actin-dependent fluorescence on the very edge of the membrane lamella, particularly in the PxA-treated fibroblasts. The interference of PxA with the formation of surface structures was pronounced after PDGF stimulation. Here, PxA effectively eliminated the enhancement of the ruffling activity in the cell edges and on the dorsal surface of the cells. In contrast to PxA, injection of non-cross-linked profilin:beta/gamma-actin had no apparent effect on cell morphology and microfilament distribution except for an increased concentration of filamentous actin in one of the cell lines.

PMID:
10739658
DOI:
10.1006/excr.1999.4786
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center