Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3520-5.

The high copper tolerance of Candida albicans is mediated by a P-type ATPase.

Author information

Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.


The pathogenic yeast Candida albicans has higher resistance than the baker's yeast Saccharomyces cerevisiae to elevated concentrations of copper. To understand the basis of this differential resistance, we performed a functional screen for C. albicans genes involved in copper detoxification. Here, we report the isolation of two such genes: a metallothionein, CaCUP1, and a copper-transporting P-type ATPase, CaCRP1. Both genes are induced by extracellular copper. Gene disruptions indicated that the copper extrusion pump is responsible for the unusual resistance of C. albicans to copper, whereas the metallothionein is responsible for the residual copper resistance of the Cacrp1Delta mutant. We show further that under acidic and anaerobic conditions, such as prevail in the natural niche of C. albicans, the digestive tract of animals, CaCRP1 function becomes essential for survival in the presence of even very low copper concentrations. These observations suggest that copper in the gastrointestinal tract may present a toxic challenge to which enteric organisms had to adapt.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center