Send to

Choose Destination
See comment in PubMed Commons below
J Muscle Res Cell Motil. 1999 Nov;20(8):797-806.

The Drosophila projectin mutant, bentD, has reduced stretch activation and altered indirect flight muscle kinetics.

Author information

Department of Molecular Physiology and Biophysics, University of Vermont, Burlington 05405, USA.


Projectin is a ca. 900 kDa protein that is a member of the titin protein superfamily. In skeletal muscle titins are involved in the longitudinal reinforcement of the sarcomere by connecting the Z-band to the M-line. In insect indirect flight muscle (IFM), projectin is believed to form the connecting filaments that link the Z-band to the thick filaments and is responsible for the high relaxed stiffness found in this muscle type. The Drosophila mutant bentD (btD) has been shown to have a breakpoint close to the carboxy-terminal kinase domain of the projectin sequence. Homozygotes for btD are embryonic lethal but heterozygotes (btD/+) are viable. Here we show that btD/+ flies have normal flight ability and a slightly elevated wing beat frequency (btD/+ 223+/-13 Hz; +/+ 203+/-5 Hz, mean +/- SD; P < 0.01). Electron microscopy of btD/+ IFM show normal ultrastructure but skinned fiber mechanics show reduced stretch activation and oscillatory work. Although btD/+ IFM power output was at wild-type levels, maximum power was achieved at a higher frequency of applied length perturbation (btD/+ 151+/-6 Hz; +/+ 102+/-14 Hz; P < 0.01). Results were interpreted in the context of a viscoelastic model of the sarcomere and indicate altered cross-bridge kinetics of the power-producing step. These results show that the btD mutation reduces oscillatory work in a way consistent with the proposed role of the connecting filaments in the stretch activation response of IFM.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center