Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Cancer. 2000 Apr 1;86(1):101-7.

The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicellular layers.

Author information

1
Department of Medicine and Medical Biophysics, Ontario Cancer Institute, University of Toronto, Canada.

Abstract

The success of chemotherapy in the treatment of solid tumours may be limited by cellular mechanisms leading to drug resistance and/or by the slow penetration of drugs through tissue, resulting in a steep concentration gradient from tumour blood vessels. One mechanism leading to the development of multidrug resistance is overexpression of the membrane-based export pump P-glycoprotein (P-gp). The relationship between expression of P-gp by constituent cells and the penetration of P-gp substrates through tissue was studied by comparing the penetration of P-gp substrates through multicellular layers derived from either wild-type or P-gp overexpressing cell lines. P-gp reversal agents were added to confirm the contribution of P-gp in influencing the penetration of its substrates. Our data indicate: 1) penetration of the P-gp substrates, 99mTc-sestaMIBI and 14C-doxorubicin, is greater through multicellular layers formed from P-gp overexpressing cell lines as compared with wild-type cells; 2) the addition of agents that inhibit the function of P-gp results in decreased penetration of these substrates through multicellular layers with P-gp expression. There was no effect of P-gp reversal agents on penetration of 14C-sucrose or of 3H-5-fluorouracil (non-substrate controls). Our data suggest that the administration of agents that inhibit the function of P-gp might have opposing effects on therapeutic index in solid tumours: increased sensitivity of perivascular tumour cells but decreased penetration of P-gp substrates to more distal cells. These effects may explain, in part, the limited therapeutic benefit for solid tumours that has accrued from use of agents that reverse the effects of P-gp.

PMID:
10728602
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center