Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2000 Mar 28;39(12):3452-60.

An endogenous sulfated inhibitor of neuronal inositol trisphosphate receptors.

Author information

1
Departments of Medicine and Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. watras@sun.uchc.edu

Abstract

In cerebellum, inositol trisphosphate- (InsP(3)-) gated Ca channels play a key role in learning, though they exhibit a low sensitivity to InsP(3) compared to peripheral tissues. In the present study, the cerebellar InsP(3) receptor is shown to be associated with a novel inhibitor of InsP(3) binding. (3)H-InsP(3) binding studies indicated that this inositol trisphosphate receptor inhibitor (IRI) could completely inhibit InsP(3) binding to the purified cerebellar InsP(3) receptor and acted as a competitive inhibitor. Gel filtration of IRI showed a predominant peak at 6500 Da, though this peak appeared to be an aggregate (with a monomeric molecular mass of approximately 1500 Da). Mass spectrometry of IRI showed a predominant peak at 1635 m/z, consistent with this low molecular mass estimate. The inhibitory activity of IRI was prevented by pretreatment with aryl sulfatase, suggesting the presence of a critical sulfo ester in IRI. IRI was insensitive to proteases and organic extraction but bound to concanavalin A, suggesting that IRI is a sulfated glycan. IRI was present in cerebellum but below the level of detection in aorta. IRI was also present in the neuronal cell line N1E115 (which exhibits a low sensitivity to InsP(3)). We conclude that IRI is a novel endogenous sulfated inhibitor of the InsP(3) receptor that modulates the sensitivity of the InsP(3) receptor and thus may explain the low InsP(3) sensitivity of neurons.

PMID:
10727240
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center