Format

Send to

Choose Destination
See comment in PubMed Commons below
Gene. 2000 Jan 25;242(1-2):141-50.

Molecular characterization of KEX1, a kexin-like protease in mouse Pneumocystis carinii.

Author information

1
Department of Pediatrics, University of Rochester School of Medicine and Dentistry, NY 14642, USA.

Abstract

Expression screening of a Pneumocystis carinii-infected mouse lung cDNA library with specific monoclonal antibodies (mAbs) led to the identification of a P. carinii cDNA with extensive homology to subtilisin-like proteases, particularly fungal kexins and mammalian prohormone convertases. The 3.1 kb cDNA contains a single open reading frame encoding 1011 amino acids. Structural similarities to fungal kexins in the deduced primary amino acid sequence include a putative proenzyme domain delineated by a consensus autocatalytic cleavage site (Arg-Glu-Lys-Arg), conserved Asp, His, Asn and Ser residues in the putative catalytic domain, a hydrophobic transmembrane spanning domain, and a carboxy-terminal cytoplasmic domain with a conserved tyrosine motif thought to be important for localization of the protease in the endoplasmic reticulum and/or Golgi apparatus. Based on these structural similarities and the classification of P. carinii as a fungus, the protease was named KEX1. Southern blotting of mouse P. carinii chromosomes localized kex1 to a single chromosome of approximately 610 kb. Southern blotting of restriction enzyme digests of genomic DNA from P. carinii-infected mouse lung demonstrated that kex1 is a single copy gene. The function of kexins in other fungi suggests that KEX1 may be involved in the post-translational processing and maturation of other P. carinii proteins.

PMID:
10721706
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center