Send to

Choose Destination
Anim Behav. 2000 Mar;59(3):593-601.

Escape flights of yellowhammers and greenfinches: more than just physics.

Author information

Department of Population Biology, Evolutionary Biology Centre, Uppsala University


Wintering birds increase their fat reserves throughout the day, and impaired escape performance is often considered to be an important cost of fat reserves. Since lifting a larger mass requires more energy, if birds escape at maximum power output, an increase in mass will impair the escape flight. In this study we did not find support for mass-dependent escape performance for yellowhammers, Emberiza citrinella, and greenfinches, Carduelis chloris, with natural daily mass increases of 7-8%. This suggests either that the birds were not performing at maximum output at dawn, when light, or that maximum power output was higher at dusk, when heavy. Either way, the birds seemed to be able to put more effort into their escape flight when heavier. In both species, when alarmed, birds took off significantly faster and at a steeper angle than when not alarmed. Yellowhammers escaped at a higher speed and angle than greenfinches, and reacted faster to the predator model. This suggests that predator escape is more than just Newtonian physics, and may be influenced by behavioural, as well as morphological, adjustments. Different species may have evolved different responses to predation risk. Our results seem to be in disagreement with recent ideas about mass-dependent predation risk. However, to build up reserves, birds have to increase exposure time, which increases predation risk. This cost may be more important than impaired escape performance when relatively small, daily, changes in body mass are considered.


Supplemental Content

Loading ...
Support Center