Format

Send to

Choose Destination
Redox Rep. 1999;4(1-2):3-11.

Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak.

Author information

1
Department of Neuroscience and Locomotion, Faculty of Health Sciences, Linköping University, Sweden. ulf.brunk@pat.liu.se

Abstract

Oxidative stress, growth factor starvation, and activation of the Fas/APO-1/CD95 receptor all induce apoptosis in a variety of cell-types, including the established human Jurkat T-cell line. Oxidative stress, in the form of exposure of the cells to a bolus dose of hydrogen peroxide, results in intralysosomal, iron-catalyzed oxidative reactions. This is accompanied by a time- and dose-dependent lysosomal destabilization--as evaluated by a decreased lysosomal uptake of the metachromatic fluorochrome, and weak base, acridine orange--in combination with leakage to the cytosol of lysosomal contents, including hydrolytic enzymes. Moderate lysosomal rupture is followed by apoptosis within initially intact plasma membranes, while necrosis and cell lysis are associated with a more complete lysosomal breach. Prior endocytosis of the potent iron-chelator desferrioxamine, resulting in binding of intralysosomal low molecular weight iron in a non-redox active form, largely prevents not only oxidative stress-induced lysosomal labilization, but apoptosis as well. When apoptosis is induced by the use of a monoclonal IgM anti-human Fas/APO-1/CD95 receptor antibody, the apoptotic process is again found to be accompanied by lysosomal leak. It is, however, not prevented by a preceding endocytosis of desferrioxamine and, consequently, could not be a function of intralysosomal iron-catalyzed oxidative reactions, but must be due to other mechanisms. Growth factor starvation of Jurkat cultures for a few days results in a high proportion of apoptotic cells, which contain lysosomes many of which have lost their proton gradient and appear to have released their contents. Overall, our results indicate that lysosomal leakage/rupture precedes apoptosis in Jurkat cells regardless of the initiating agent, but that such rupture may occur through multiple mechanisms. Lysosomal enzymes, leaking out of their normal vacuolar compartment, may then induce apoptosis, perhaps by proteolytic activation of the caspase-family of enzymes. Regardless of the precise mechanism, these observations suggest that partial rupture of the acidic vacuolar compartment may be one of the final pathways in apoptosis.

PMID:
10714269
DOI:
10.1179/135100099101534675
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center