Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2000 Mar;278(3):C473-9.

Stretch-induced activation of Ca(2+)-activated K(+) channels in mouse skeletal muscle fibers.

Author information

Laboratoire de Physiologie des Eléments Excitables, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5578, Université C. Bernard Lyon I, 69622 Villeurbanne Cedex, France.


High-conductance Ca(2+)-activated K(+) (K(Ca)) channels were studied in mouse skeletal muscle fibers using the patch-clamp technique. In inside-out patches, application of negative pressure to the patch induced a dose-dependent and reversible activation of K(Ca) channels. Stretch-induced increase in channel activity was found to be of the same magnitude in the presence and in the absence of Ca(2+) in the pipette. The dose-response relationships between K(Ca) channel activity and intracellular Ca(2+) and between K(Ca) channel activity and membrane potential revealed that voltage and Ca(2+) sensitivity were not altered by membrane stretch. In cell-attached patches, in the presence of high external Ca(2+) concentration, stretch-induced activation was also observed. We conclude that membrane stretch is a potential mode of regulation of skeletal muscle K(Ca) channel activity and could be involved in the regulation of muscle excitability during contraction-relaxation cycles.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center