Format

Send to

Choose Destination
FEBS Lett. 2000 Mar 3;469(1):9-13.

Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon.

Author information

1
College of Life Sciences, Wuhan University, Wuhan, PR China. khzhao@public.wh.hb.cn

Abstract

The structure of phycoviolobilin, the photoactive chromophore of alpha-phycoerythrocyanin, is incompatible with a chromophore ligation to the apoprotein via SH-addition (cysteine) to a Delta3, 3(1)-double bond of the phycobilin. The two putative phycoerythrocyanin lyase genes of Mastigocladus laminosus, pecE and pecF, were overexpressed in Escherichia coli. Their action has been studied on the addition reaction of phycocyanobilin to apo-alpha-phycoerythrocyanin (PecA). In the absence of the components of alpha-PEC-phycoviolobilin lyase PecE and PecF, or in the presence of only one of them, phycocyanobilin binds covalently to PecA forming a fluorescent chromoprotein with a red-shifted absorption (lambda(max)=641 nm) and low photoactivity (<10%). In the presence of both PecE and PecF, a chromoprotein forms which by its absorption (lambda(max)=565 nm) and high photoreversible photochromism (100% type I) has been identified as integral alpha-phycoerythrocyanin. We conclude that PecE and PecF jointly catalyze not only the addition of phycocyanobilin to PecA, but also its isomerization to the native phycoviolobilin chromophore.

PMID:
10708746
DOI:
10.1016/s0014-5793(00)01245-x
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center