Send to

Choose Destination
Trends Endocrinol Metab. 2000 Apr;11(3):91-9.

Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor.

Author information

Department of Biochemistry, Tel Aviv University, Ramat Aviv 69978, Israel.


G-protein-coupled receptors (GPCRs) are a large group of integral membrane receptors that transmit signals from a diverse array of external stimuli, including neurotransmitters, hormones, phospholipids, photons, odorants and taste ligands. In response to ligand binding, the GPCRs initiate diverse downstream signaling pathways through four groups of G proteins and other interacting proteins. Key components in GPCR-induced intracellular signaling are four groups of mitogen-activated protein kinase (MAPK) cascades: extracellular signal-related kinase (ERK), Jun N-terminal kinase (JNK), p38MAPK and big MAPK (BMK). The hallmark of MAPK signaling is the stimulation-dependent nuclear translocation of the involved kinases, which regulate gene expression and the cytoplasmic acute response to mitogenic, stress-related, apoptotic and survival stimuli. A special type of GPCR is the gonadotropin-releasing hormone (GnRH) receptor, which uses primarily the Gq protein for its downstream signaling. GnRH activates all four MAPK cascades by a PKC-dependent mechanism. Common signaling molecules, including the tyrosine kinase c-SRC and the small GTPases CDC42, RAC and RAS, are implicated in various aspects of the GnRH-MAPK pathways. Thus, the activation of MAPK cascades by GnRH opens a new vista in the understanding of the transcriptional regulation of genes encoding gonadotropins. However, additional studies on cell lines and whole animals are required to understand GnRH signaling in the context of other hormones during the reproductive cycle of mouse and human.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center