Format

Send to

Choose Destination
Nature. 2000 Feb 24;403(6772):895-8.

A neurofibromatosis-1-regulated pathway is required for learning in Drosophila.

Author information

1
Cold Spring Harbor Laboratory, New York 11724, USA.

Abstract

The tumour-suppressor gene Neurofibromatosis 1 (Nf1) encodes a Ras-specific GTPase activating protein (Ras-GAP). In addition to being involved in tumour formation, NF1 has been reported to cause learning defects in humans and Nf1 knockout mice. However, it remains to be determined whether the observed learning defect is secondary to abnormal development. The Drosophila NF1 protein is highly conserved, showing 60% identity of its 2,803 amino acids with human NF1 (ref. 12). Previous studies have suggested that Drosophila NF1 acts not only as a Ras-GAP but also as a possible regulator of the cAMP pathway that involves the rutabaga (rut)-encoded adenylyl cyclase. Because rut was isolated as a learning and short-term memory mutant, we have pursued the hypothesis that NF1 may affect learning through its control of the Rut-adenylyl cyclase/cAMP pathway. Here we show that NF1 affects learning and short-term memory independently of its developmental effects. We show that G-protein-activated adenylyl cyclase activity consists of NF1-independent and NF1-dependent components, and that the mechanism of the NF1-dependent activation of the Rut-adenylyl cyclase pathway is essential for mediating Drosophila learning and memory.

Comment in

PMID:
10706287
DOI:
10.1038/35002593
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center