Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain

J Neurosci. 2000 Mar 15;20(6):RC65. doi: 10.1523/JNEUROSCI.20-06-j0004.2000.

Abstract

The indirect catecholamine agonist methylphenidate (Ritalin) is the drug treatment of choice in attention deficit/hyperactivity disorder (AD/HD), one of the most common behavioral disorders of childhood (DSM-IV), although symptoms may persist into adulthood. Methylphenidate can enhance cognitive performance in adults and children diagnosed with AD/HD (Kempton et al., 1999; Riordan et al., 1999) and also in normal human volunteers on tasks sensitive to frontal lobe damage, including aspects of spatial working memory (SWM) performance (Elliott et al., 1997). The present study investigated changes in regional cerebral blood flow (rCBF) induced by methylphenidate during performance of a self-ordered SWM task to define the neuroanatomical loci of the beneficial effect of the drug. The results show that the methylphenidate-induced improvements in working memory performance occur with task-related reductions in rCBF in the dorsolateral prefrontal cortex and posterior parietal cortex. The beneficial effects of methylphenidate on working memory were greatest in the subjects with lower baseline working memory capacity. This is to our knowledge the first demonstration of a localization of a drug-induced improvement in SWM performance in humans and has relevance for understanding the treatment of AD/HD.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenergic Uptake Inhibitors / pharmacology*
  • Adult
  • Central Nervous System Stimulants / pharmacology*
  • Cerebrovascular Circulation / drug effects
  • Dopamine Uptake Inhibitors / pharmacology*
  • Frontal Lobe / blood supply
  • Frontal Lobe / drug effects*
  • Frontal Lobe / physiology
  • Functional Laterality
  • Humans
  • Male
  • Memory, Short-Term / drug effects*
  • Memory, Short-Term / physiology
  • Methylphenidate / pharmacology*
  • Parietal Lobe / blood supply
  • Parietal Lobe / drug effects*
  • Parietal Lobe / physiology
  • Tomography, Emission-Computed

Substances

  • Adrenergic Uptake Inhibitors
  • Central Nervous System Stimulants
  • Dopamine Uptake Inhibitors
  • Methylphenidate