Format

Send to

Choose Destination
Oncogene. 2000 Feb 17;19(7):841-9.

NF-kappa B is required for H-ras oncogene induced abnormal cell proliferation and tumorigenesis.

Author information

1
The Vanderbilt-Ingram Cancer Center, Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

Abstract

Oncogenic mutations in ras lead to constitutive activation of downstream signaling pathways that modulate the activities of transcription factors. In turn, these factors control the expression of a subset of genes responsible for neoplastic cell transformation. Recent studies suggest that transcription factor NF-kappa B contributes to cell transformation by inhibiting the cell death signal activated by oncogenic Ras. In this study, inhibition of NF-kappa B activity by forced expression of a super-repressor form of I kappa B alpha, the major inhibitor of NF-kappa B, markedly decreased the growth rate, saturation density and tumorigenicity of oncogenic H-Ras transformed rat embryo fibroblasts. Such clonally isolated cells overexpressing I kappa B alpha super-repressor not only were viable but also exhibited no sign of spontaneous apoptosis. Inhibition of NF-kappa B in these cells was functionally demonstrated by both the loss of cytokine induced DNA binding activity and a profoundly increased sensitivity to cell death in response to TNF-alpha treatment. In contrast, inhibition of NF-kappa B activity in non-transformed fibroblasts had minimal effect on growth, but rendered the cells resistant to a subsequent transformation by H-ras oncogene. Similar results were also obtained with rat intestinal epithelial cells harboring an inducible ras oncogene. Taken together, these findings suggest that NF-kappa B activity is essential for abnormal cell proliferation and tumorigenicity activated by the ras oncogene and highlight an alternative functional role for NF-kappa B in oncogenic Ras-mediated cell transformation that is distinct from its anti-apoptotic activity. Oncogene (2000) 19, 841 - 849.

PMID:
10702792
DOI:
10.1038/sj.onc.1203392
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center