Send to

Choose Destination
See comment in PubMed Commons below
Acta Biochim Pol. 1999;46(3):823-35.

Effect of thyroid hormone on the myosin heavy chain isoforms in slow and fast muscles of the rat.

Author information

Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warszawa, Poland.


The myosin heavy chain (MHC) was studied by biochemical methods in the slow-twitch (soleus) and two fast-twitch leg muscles of the triiodothyronine treated (hyperthyroid), thyroidectomized (hypothyroid) and euthyroid (control) rats. The changes in the contents of individual MHC isoforms(MHC-1, MHC-2A, MHC-2B and MHC-2X) were evaluated in relation to the muscle mass and the total MHC content. The MHC-1 content decreased in hyperthyreosis, while it increased in hypothyreosis in the soleus and in the fast muscles. The MHC-2A content increased in hyperthyreosis and it decreased in hypothyreosis in the soleus muscle. In the fast muscles hyperthyreosis did not affect the MHC-2A content, whereas hypothyreosis caused an increase in this MHC isoform content. The MHC-2X, present only in traces or undetected in the control soleus muscle, was synthesised in considerable amount in hyperthyreosis; in hypothyreosis the MHC-2X was not detected in the soleus. In the fast muscles the content of MHC-2X was not affected by any changes in the thyroid hormone level. The MHC-2B seemed to be not influenced by hyperthyreosis in the fast muscles, whereas the hypothyreosis caused a decrease of its content. In the soleus muscle the MHC-2B was not detected in any groups of rats. The results suggest that the amount of each of the four MHC isoforms expressed in the mature rat leg muscles is influenced by the thyroid hormone in a different way. The MHC-2A and the MHC-2X are differently regulated in the soleus and in the fast muscles; thyroid hormone seems to be necessary for expression of those isoforms in the soleus muscle.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Acta Biochemica Polonica, Inc.
    Loading ...
    Support Center