Send to

Choose Destination
Can J Microbiol. 2000 Jan;46(1):72-80.

Growth kinetics of Escherichia coli with galactose and several other sugars in carbon-limited chemostat culture.

Author information

Swiss Federal Institute for Environmental Science and Technology (EAWAG), Swiss Federal Institute of Technology, Dübendorf, Switzerland.


Kinetic models for microbial growth describe the specific growth rate (mu) as a function of the concentration of the growth-limiting nutrient (s) and a set of parameters. A typical example is the model proposed by Monod, where mu is related to s using substrate affinity (Ks) and the maximum specific growth rate (mu max). The preferred method to determine such parameters is to grow microorganisms in continuous culture and to measure the concentration of the growth-limiting substrate as a function of the dilution rate. However, owing to the lack of analytical methods to quantify sugars in the microgram per litre range, it has not been possible to investigate the growth kinetics of Escherichia coli in chemostat culture. Using an HPLC method able to determine steady-state concentrations of reducing sugars, we previously have shown that the Monod model adequately describes glucose-limited growth of E. coli ML30. This has not been confirmed for any other sugar. Therefore, we carried out a similar study with galactose and found steady-state concentrations between 18 and 840 micrograms.L-1 for dilution rates between 0.2 and 0.8.h-1, respectively. With these data the parameters of several models giving the specific growth rate as a function of the substrate concentration were estimated by nonlinear parameter estimation, and subsequently, the models were evaluated statistically. From all equations tested, the Monod model described the data best. The parameters for galactose utilisation were mu max = 0.75.h-1 and Ks = 67 micrograms.L-1. The results indicated that accurate Ks values can be estimated from a limited set of steady-state data when employing mu max measured during balanced growth in batch culture. This simplified procedure was applied for maltose, ribose, and fructose. For growth of E. coli with these sugars, mu max and Ks were for maltose 0.87.h-1, 100 micrograms.L-1; for ribose 0.57.h-1, 132 micrograms.L-1, and for fructose 0.70.h-1, 125 micrograms.L-1.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center