Send to

Choose Destination
J Med Chem. 2000 Feb 24;43(4):581-90.

Chiral nonsteroidal affinity ligands for the androgen receptor. 1. Bicalutamide analogues bearing electrophilic groups in the B aromatic ring.

Author information

Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee-Memphis, Memphis, Tennessee 38163, USA.


A series of chiral analogues of bicalutamide bearing electrophilic groups (isothiocyanate, N-chloroacetyl, and N-bromoacetyl) on aromatic ring B of the parent molecule were synthesized. These compounds were designed as affinity ligands for the androgen receptor (AR). We prepared the (R)- and (S)-optical isomers of these compounds as pure enantiomers. The AR binding affinities of these compounds were measured in a competitive binding assay with the radiolabeled high-affinity AR ligand, [(3)H]mibolerone. In accordance with our previous results for the enantiomers of bicalutamide, we found that all (R)-isomers demonstrated much higher binding affinity to the AR as compared to their corresponding (S)-isomers. The para-substituted affinity ligands in ring B bound the AR with higher affinities than the corresponding meta-substituted analogues. Oxidation of thioester affinity ligands to their sulfonyl analogues for the para-substituted compounds decreased AR binding affinities and similar modification increased binding affinities for corresponding meta-analogues. The least potent para-substituted sulfonyl compounds had higher AR binding affinities than the most potent meta-substituted sulfonyl compounds. Overall, the para-substituted unoxidized molecules demonstrated the highest AR binding affinity. Subsequent research using AR exchange assays and Scatchard analyses showed that the isothiocyanate affinity ligands (R)-7, (R)-9, and (R)-10 reported herein are the first specific chemoaffinity ligands for the AR.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center