Send to

Choose Destination
J Med Chem. 2000 Feb 24;43(4):551-9.

Novel ligands lacking a positive charge for the delta- and mu-opioid receptors.

Author information

Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, 110 Pine Avenue West, Montréal, Quebec, Canada.


Recently we reported using minilibraries to replace Lys(9) [somatostatin (SRIF) numbering] of the potent somatostatin agonist L-363,301 (c[-Pro-Phe-D-Trp-Lys-Thr-Phe-]) to generate the potent neurokinin receptor (NK-1) antagonist c[-Pro-Phe-D-Trp-p-F-Phe-Thr-Phe-]. This novel cyclic hexapeptide did not bind the SRIF receptor. Thus, a single mutation converted L-363,301, a SRIF agonist with potency ca. 2-8 times the potency of SRIF in laboratory animals,(24) into a selective NK-1 receptor antagonist with an IC(50) of 2 nM in vitro. During the screening of the same libraries for ligands of the delta-opioid receptor, we identified four compounds (1-4) which represent a new class of delta-opioid antagonists, some of which were also NK-1 receptor antagonists. The most potent delta-opioid antagonist, c[-Pro-1-Nal-D-Trp-Tyr-Thr-Phe-] (2), showed a K(e) value of 128 nM in the mouse vas deferens assay and a delta-receptor binding affinity constant of 152 nM in the rat brain membrane binding assay. These results are of interest because they represent a novel class of delta-opioid antagonists and, like two previously reported delta-opioid antagonists, they lack a positive charge. To examine further the requirement for a positive charge in the delta-opioid ligands, we prepared two analogues of the beta-casomorphin-derived mixed mu-agonist/delta-antagonist, H-Dmt-c[-D-Orn-2-Nal-D-Pro-Gly-] (7), in which we eliminated the positive charge either through formylation of the primary amino group (5) or by the deletion of this N-terminal amino group (6). These latter compounds proved to be delta-opioid antagonists with K(e) values in the 16-120 nM range, as well as fairly potent mu-opioid antagonists (K(e) approximately 200 nM). These six compounds provide the most convincing evidence to date that there is no requirement for a positive charge in mu- and delta-opioid receptor antagonists. In addition, cyclic hexapeptide 4 lacks a phenolic hydroxyl group. Taken together, these data suggest that the prevailing assumptions about delta- and mu-opioid receptor binding need revision and that the receptors for these opioid ligands have much in common with the NK-1 and somatostatin receptors.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center