Send to

Choose Destination
Anesthesiology. 2000 Feb;92(2):523-8.

Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria.

Author information

Department of Anesthesiology, University of Illinois College of Medicine at Chicago, 60612, USA.



The authors previously reported that secondary carnitine deficiency may sensitize the heart to bupivacaine-induced arrhythmias. In this study, the authors tested whether bupivacaine inhibits carnitine metabolism in cardiac mitochondria.


Rat cardiac interfibrillar mitochondria were prepared using a differential centrifugation technique. Rates of adenosine diphosphate-stimulated (state III) and adenosine diphosphate-limited (state IV) oxygen consumption were measured using a Clark electrode, using lipid or nonlipid substrates with varying concentrations of a local anesthetic.


State III respiration supported by the nonlipid substrate pyruvate (plus malate) is minimally affected by bupivacaine concentrations up to 2 mM. Lower concentrations of bupivacaine inhibited respiration when the available substrates were palmitoylcarnitine or acetylcarnitine; bupivacaine concentration causing 50% reduction in respiration (IC50 +/- SD) was 0.78+/-0.17 mM and 0.37+/-0.03 mM for palmitoylcarnitine and acetylcarnitine, respectively. Respiration was equally inhibited by bupivacaine when the substrates were palmitoylcarnitine alone, or palmitoyl-CoA plus carnitine. Bupivacaine (IC50 = 0.26+/-0.06 mM) and etidocaine (IC50 = 0.30+/-0.12 mM) inhibit carnitine-stimulated pyruvate oxidation similarly, whereas the lidocaine IC50 is greater by a factor of roughly 5, (IC50 = 1.4+/-0.26 mM), and ropivacaine is intermediate, IC50 = 0.5+/-0.28 mM.


Bupivacaine inhibits mitochondrial state III respiration when acylcarnitines are the available substrate. The substrate specificity of this effect rules out bupivacaine inhibition of carnitine palmitoyl transferases I and II, carnitine acetyltransferase, and fatty acid beta-oxidation. The authors hypothesize that differential inhibition of carnitine-stimulated pyruvate oxidation by various local anesthetics supports the clinical relevance of inhibition of carnitine-acylcarnitine translocase by local anesthetics with a cardiotoxic profile.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center