Send to

Choose Destination
Cytometry. 2000 Feb 1;39(2):108-16.

Detection of cell cycle subcompartments by flow cytometric estimation of DNA-RNA content in combination with dual-color immunofluorescence.

Author information

Department of Hematology/Oncology, University of California at Los Angeles School of Medicine, Los Angeles, CA 90095, USA.



Correlated flow cytometric measurements of phenotype and DNA-RNA content offer detailed information on cell cycle status of subpopulations in heterogeneous cell preparations in response to stimulation. We have developed a method for flow cytometric analysis of DNA-RNA content that has been optimized for simultaneous measurement of dual-color immunofluorescence.


Nucleic acid staining was performed at low pH in the presence of saponin. DNA was stained with 7-aminoactinomycin D (7-AAD) and RNA with pyronin Y(G) (PY); both dyes were used at low concentrations, and 7-AAD was exchanged with nonfluorescent actinomycin D after DNA staining to minimize fluorochrome-fluorochrome interactions. For cell surface antigen staining, allophycocyanin was combined with pH-independent Alexa488 instead of fluorescein-isothiocyanate (FITC) because FITC is pH sensitive.


This method identified cell cycle subcompartments in CEM cells comparable to published results on cell lines using other dyes and staining methods. Measurement of DNA-RNA content in CD8 lymphocyte subsets of human peripheral blood mononuclear cells costimulated with CD3/CD28.2 showed that, after 48 h of stimulation, 80% of CD8(+) T cells were in the proliferative state, whereas 86% of CD8(+) non-T cells remained in G(0).


This technique permits the clear identification of cellular subpopulations by phenotype and assessment of their cell cycle status.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center