Send to

Choose Destination
J Mol Biol. 2000 Feb 25;296(3):743-56.

Ligand-triggered stabilization of vitamin D receptor/retinoid X receptor heterodimer conformations on DR4-type response elements.

Author information

Institut für Physiologische Chemie I and Biomedizinisches Forschungszentrum, Heinrich-Heine-Universität, Düsseldorf, D-40001, Germany.


Nuclear receptors integrate an incoming signal in the form of a nuclear hormone by undergoing a conformational change that results via co-activator proteins in an activation of the basal transcriptional machinery. The vitamin D(3) receptor is the nuclear receptor for 1alpha,25-dihydroxyvitamin D(3 )(1alpha,25(OH)(2)D(3)) and is known to function as a heterodimer with the retinoid X receptor on DR3-type 1alpha,25(OH)(2)D(3) response elements. Here, it could be demonstrated that DR4-type response elements are at least as effective as DR3-type 1alpha,25(OH)(2)D(3) response elements. Gel shift clipping analysis showed that vitamin D(3) receptor-retinoid X receptor heterodimers form in response to 1alpha, 25(OH)(2)D(3) and retinoid X receptor ligands, the pan-agonist 9-cis retinoic acid (9cRA) and the retinoid X receptor-selective retinoid CD2425, different conformations on the DR4-type element of the rat Pit-1 gene. Interestingly, on this response element the heterodimeric complexes of retinoid X receptor with the thyroid hormone receptor, the retinoic acid receptor and the benzoate ester receptor also displayed characteristic individual ligand-dependent complex formation. On the level of complex formation, utilizing DNA affinity and functional assays, only vitamin D(3) receptor-retinoid X receptor heterodimers showed a synergistic interaction of both ligands. However, the sensitivity of vitamin D(3) receptor-retinoid X receptor heterodimers to 1alpha,25(OH)(2)D(3) was found to be much higher than to retinoid X receptor ligands. Taken together, this study demonstrates a unique interaction potential of vitamin D(3) receptor and retinoid X receptor but also establishes DR4-type response elements as multi-functional DNA binding sites with a potential to integrate various hormone signalling pathways.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center