Send to

Choose Destination
Eur J Biochem. 2000 Feb;267(4):1110-6.

Characterization of hydroxylaminobenzene mutase from pNBZ139 cloned from Pseudomonas pseudoalcaligenes JS45. A highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups.

Author information

Air Force Research Laboratory, Tyndall Air Force Base, FL 32403, USA.


Hydroxylaminobenzene mutase is the enzyme that converts intermediates formed during initial steps in the degradation of nitrobenzene to a novel ring-fission lower pathway in Pseudomonas pseudoalcaligenes JS45. The mutase catalyzes a rearrangement of hydroxylaminobenzene to 2-aminophenol. The mechanism of the reactions and the properties of the enzymes are unknown. In crude extracts, the hydroxylaminobenzene mutase was stable at SDS concentrations as high as 2%. A procedure including Hitrap-SP, Hitrap-Q and Cu(II)-chelating chromatography was used to partially purify the enzyme from an Escherichia coli clone. The partially purified enzyme was eluted in the void volume of a Superose-12 gel-filtration column even in the presence of 0.05% SDS in 25 mM Tris/HCl buffer, which indicated that it was highly associated. When the enzymatic conversion of hydroxylaminobenzene to 2-aminophenol was carried out in 18O-labeled water, the product did not contain 18O, as determined by GC-MS. The results indicate that the reaction proceeded by intramolecular transfer of the hydroxy group from the nitrogen to the C-2 position of the ring. The mechanism is clearly different from the intermolecular transfer of the hydroxy group in the non-enzymatic Bamberger rearrangement of hydroxylaminobenzene to 4-aminophenol and in the enzymatic hydroxymutation of chorismate to isochorismate.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center