Send to

Choose Destination
J Biol Chem. 2000 Feb 18;275(7):4555-60.

Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates.

Author information

Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.


Fhit, a member of the histidine triad superfamily of nucleotide-binding proteins, binds and cleaves diadenosine polyphosphates and functions as a tumor suppressor in human epithelial cancers. Function of Fhit in tumor suppression does not require diadenosine polyphosphate cleavage but correlates with the ability to form substrate complexes. As diadenosine polyphosphates are at lower cellular concentrations than mononucleotides, we sought to quantify interactions between Fhit and competitive inhibitors with the use of diadenosine polyphosphate analogs containing fluorophores in place of one nucleoside. Appp-S-(7-diethylamino-4-methyl-3-(4-succinimidylphenyl)) coumarin (ApppAMC), Appp-S-(4-4-difluoro-5,7-dimethyl-4-bora-3a, 4a-diaza-s-indacine-3-yl) methylaminoacetyl (ApppBODIPY), and GpppBODIPY, synthesized in high yield, are effective Fhit substrates, producing AMP or GMP plus fluorophore diphosphates. GpppBODIPY cleavage is accompanied by a 5.4-fold increase in fluorescence because BODIPY fluorescence is quenched by stacking with guanine. Titration of unlabeled diadenosine polyphosphates, inorganic pyrophosphate, mononucleotides, and inorganic phosphate into fluorescent assays provided values of K(m) and K(I) as competitive inhibitors. The data indicate that Fhit discriminates between good substrates via k(cat) and against cellular competitors in equilibrium binding terms. Surprisingly, pyrophosphate competes better than purine mononucleotides.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center