Format

Send to

Choose Destination
Arch Biochem Biophys. 2000 Feb 15;374(2):313-24.

TGF-beta1 stimulation of fibronectin transcription in cultured human lung fibroblasts requires active geranylgeranyl transferase I, phosphatidylcholine-specific phospholipase C, protein kinase C-delta, and p38, but not erk1/erk2.

Author information

1
Department of Anatomy and Histology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA.

Abstract

The cytokine transforming growth factor-beta (TGF-beta) has multiple effects on a variety of cell types, modulating cell growth and differentiation as well as extracellular matrix deposition and degradation. In the present work, we demonstrate that TGF-beta1 produces a fourfold increase in transcription of the fibronectin gene in cultured human fetal lung fibroblasts with only a small increase in mRNA stability resulting in a significant increase in fibronectin mRNA steady state level. A corresponding increase in production of fibronectin protein accompanied the increase in mRNA. Through the use of specific inhibitors, we demonstrate that geranylgeranylated, but not farnesylated or acylated protein(s), protein kinase C-delta, phosphatidylcholine-specific phospholipse C, tyrosine kinase activity, and stress-activated protein kinase p38 are required for this TGF-beta1 effect. Trimeric G proteins and mitogen-activated protein kinases erk1 and erk2 do not appear to be involved. While these results emphasize the complexities involved in the control of extracellular matrix synthesis by TGF-beta, they also identify reaction sites that may be amenable to pharmacologic modulation. Such modulation could be of great advantage in the treatment of a wide variety of undesirable fibrotic reactions.

PMID:
10666313
DOI:
10.1006/abbi.1999.1625
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center