Format

Send to

Choose Destination
Nature. 2000 Jan 20;403(6767):274-80.

Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors.

Author information

1
Department of Psychiatry, University of Toronto, Ontario, Canada.

Abstract

GABA(A) (gamma-aminobutyric-acid A) and dopamine D1 and D5 receptors represent two structurally and functionally divergent families of neurotransmitter receptors. The former comprises a class of multi-subunit ligand-gated channels mediating fast interneuronal synaptic transmission, whereas the latter belongs to the seven-transmembrane-domain single-polypeptide receptor superfamily that exerts its biological effects, including the modulation of GABA(A) receptor function, through the activation of second-messenger signalling cascades by G proteins. Here we show that GABA(A)-ligand-gated channels complex selectively with D5 receptors through the direct binding of the D5 carboxy-terminal domain with the second intracellular loop of the GABA(A) gamma2(short) receptor subunit. This physical association enables mutually inhibitory functional interactions between these receptor systems. The data highlight a previously unknown signal transduction mechanism whereby subtype-selective G-protein-coupled receptors dynamically regulate synaptic strength independently of classically defined second-messenger systems, and provide a heuristic framework in which to view these receptor systems in the maintenance of psychomotor disease states.

PMID:
10659839
DOI:
10.1038/35002014
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center