Format

Send to

Choose Destination
See comment in PubMed Commons below
Free Radic Biol Med. 2000 Jan 1;28(1):64-74.

Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts.

Author information

1
Institute of Pathology, Charité, Humboldt-University Berlin, Germany. thomas.von_zglinicki@charite.de

Abstract

Telomere shortening triggers replicative senescence in human fibroblasts. The inability of DNA polymerases to replicate a linear DNA molecule completely (the end replication problem) is one cause of telomere shortening. Other possible causes are the formation of single-stranded overhangs at the end of telomeres and the preferential vulnerability of telomeres to oxidative stress. To elucidate the relative importance of these possibilities, amount and distribution of telomeric single-strand breaks, length of the G-rich overhang, and telomere shortening rate in human MRC-5 fibroblasts were measured. Treatment of nonproliferating cells with hydrogen peroxide increases the sensitivity to S1 nuclease in telomeres preferentially and accelerates their shortening by a corresponding amount as soon as the cells proliferate. A reduction of the activity of intracellular peroxides using the spin trap alpha-phenyl-t-butyl-nitrone reduces the telomere shortening rate and increases the replicative life span. The length of the telomeric single-stranded overhang is independent of DNA damaging stresses, but single-strand breaks accumulate randomly all along the telomere after alkylation. The telomere shortening rate and the rate of replicative aging can be either accelerated or decelerated by a modification of the amount of oxidative stress. Quantitatively, stress-mediated telomere damage contributes most to telomere shortening under standard conditions.

PMID:
10656292
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center