Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2000 Jan;278(1):C144-53.

Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide.

Author information

1
Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

Abstract

Brief "preconditioning" ischemia induces ischemic tolerance (IT) and protects the animal brain from subsequent otherwise lethal ischemia. Identification of the signaling steps most proximal to the development of the IT will allow induction of the resistance to ischemia shortly after the onset of stroke. Animal studies demonstrate a key role of tumor necrosis factor-alpha (TNF-alpha) in induction of IT. The sphingolipid ceramide is known as a second messenger in many of the multiple effects of TNF-alpha. We hypothesized that ceramide could mediate IT. We demonstrate that preconditioning of rat cortical neurons with mild hypoxia protects them from hypoxia and O(2)-glucose deprivation injury 24 h later (50% protection). TNF-alpha pretreatment could be substituted for hypoxic preconditioning (HP). HP was attenuated by TNF-alpha-neutralizing antibody. HP and TNF-alpha pretreatment cause a two- to threefold increase of intracellular ceramide levels, which coincides with the state of tolerance. Fumonisin B(1), an inhibitor of ceramide synthase, attenuated ceramide upregulation and HP. C-2 ceramide added to the cultures right before the hypoxic insult mimicked the effect of HP. Ceramide did not induce apoptosis. These results suggest that HP is mediated via ceramide synthesis triggered by TNF-alpha.

PMID:
10644522
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center