Format

Send to

Choose Destination
See comment in PubMed Commons below
J Surg Res. 2000 Feb;88(2):104-13.

Role of actin cytoskeleton in prostaglandin-induced protection against ethanol in an intestinal epithelial cell line.

Author information

1
Theodore Cooper Surgical Research Institute, Saint Louis University Health Sciences Center, St. Louis, Missouri 63104, USA.

Abstract

Prostaglandins (PGs) protect a variety of gastrointestinal cells against injury induced by ethanol and other noxious agents. This investigation attempted to discern the mechanism of cytoprotection as it relates to the relationship between actin and PGs in IEC-6 cells (a rat intestinal epithelial cell line). IEC-6 cells were incubated in Dulbecco's modified Eagle's medium +/- 16,16-dimethyl prostaglandin E(2) (dmPG, 2.6 microM) for 15 min and subsequently incubated in medium containing 1, 2.5, 5, 7.5, and 10% ethanol (EtOH). Cells were then processed for immunocytochemistry using FITC-phalloidin in order to stain the actin cytoskeleton, and cell viability was determined by trypan blue exclusion. Quantitative Western immunoblotting of fractioned G-actin (nonpolymerized; S1) and F-actin (polymerized; S2) was also carried out. EtOH concentrations equal to and greater than 5% led to the collapse of the actin cytoskeleton as depicted by extensive disorganization and fragmentation. In addition, these same EtOH concentrations significantly decreased the S2 fraction and increased the S1 pool of actin. Preincubation with dmPG prevented collapse of the actin cytoskeleton, significantly increased the S2 polymerized fraction as determined by quantitative immunoblotting, and increased cell viability in EtOH-treated cultures. Prior incubation with cytochalasin D, an actin disruptive agent, not only reduced cell viability but also prevented the cytoprotective effects of dmPG. Phalloidin, an actin stabilizing agent, had effects similar to that of dmPG as demonstrated by stability of the actin cytoskeleton and increased cellular viability. Such findings indicate that PGs are important in the organization and stability of actin under in vitro conditions. These effects on actin may play an essential role in the mechanism of PG-induced cytoprotection.

PMID:
10644474
DOI:
10.1006/jsre.1999.5786
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center